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PREFACE

The present effort was conducted in support of the Armstrong
Laboratory/Aircrew Training Research Division (AL/HRA) research
concerning image quality in simulator displays. The goal of this
effort was to further the effort in developing a quantitative model
to be used in predicting the quality of simulator display systems.
The project was conducted under Work Unit 1123-03-85, Flying
Training Research Support. Research support was provided by the
University of Dayton Research Institute under Contract No. F33615-
90-C-0005. The contract monitor was Ms. Patricia Spears, AL/HRAP.

The goal of this specific research effort was (a) identify
critical components within the image display process which would be
required in an image quality metric, (b) critically examine the
measurement and use of the display modulation transfer function in
currently used metrics, and (c) identify a methodology for
experimentally studying image quality from a multidimensional
perspective.

The author wishes to express thanks to Ms., Marge Keslin for
final edit of the manuscript.




INAGE QUALITY AND THE DISPLAY NODULATION TRANSFER FUNCTION:
EXPERINENTAL FINDINGS

INTRODUCTION

Modern simulator displays are built using a variety of
technologies, making the choice of display type for a particular
simulator a complex process. The criteria used in choosing a
display system for a particular task must include cost, physical
size 1limitations, maintainability, and user satisfaction or
acceptability. Cost and physical size factors can be specified
objectively while estimates of maintainability are somewhat vague,
requiring tasks such as a reliability analysis and estimates of
personnel required to maintain specific functions. It is user
satisfaction/acceptability, based upon the quality of the imagery
displayed, which eludes comprehensive measura2ment or analysis of
any generality.

Acceptability of imagery/display systems, whether it be for
specifically trained tasks or aesthetic appeal, is studied within
the realm of image quality research. Image quality research
focuses on the prediction, explanation, and understanding of
physical and psychological factors which determine the quality of
imagery.

One primary goal in image quality research is to construct
scalar measures or metrics which will order imagery along a single
dimension, a dimension denoting the "goodness" or quality of the
image. The measures or metrics will be analytic derivations based
upon a composition of factors from the image, the display device,
and the observer.

Figure 1 emphasizes the sequential nature of these subsystems
(the original image, the display device, and the observer) in their
contribution to the overall imag. quality process. In Figure 1,
these subsystems are shown to be defined under a specific task or
set of tasks under the assumption that perceived image gquality is
a task dependent quantity.

The use of the term "goodness" of an image brings to mind one
of the major shortcomings noted by most researchers in image
quality--that of objectively or operationally defining image
quality. Two distinct measures have dominated the empirical work,
viewer preference and psychophysical performance. Viewer
preference typically involves ratings or ranking of the aesthetic
value of imagery (e.g., Kusaka, 1989; Zetsche & Hauske, 1989).
Performance tasks, consisting of -eaction time and accuracy
measures, require observers to make u.scriminations under degraded
viewing conditions (e.g., Task, 1979). The relationship between
these two empirical measures has received little theoretical or
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empirical discussion. In tliis report, the relationship between the
two measures will be discussed only indirectly, based upon
threshold and suprathreshold stimulation of the human visual
systen.

A second major division can be made delineating imagery from
the reading of text (e.g., Roufs & Bouma, 1980). The relationship
between the quality of these two types of imagery is also unclear,
text quality inherently being a serjal, task-driven scenario
dominated by foveal performance, and imagery belonging to parallel,
spatially based processes including both foveal and peripheral
vision.

The experimental work under consideration in this report
includes only picture-type imagery. In addition, observer
preference, typically associated with suprathreshold behavior, is
used as the empirical measure of image quality and it will be
assumed to have face validity. It is evident, however, that there
is a need to clarify the relationship between the observer
preference-based definition of image quality and the performance-
based definition, typically associated with threshold behavior. 1In
this report, this topic is discussed more thoroughly in the section
describing the Contrast Sensitivity Function (CSF) and the
Modulation Transfer Function (MTF) of the eye.

In flight simulation technology, advances have provided a
variety of display devices from which to choose. These devices
range from helmet-mounted displays to large dome displays. Display
parameters vary dramatically across this range of devices. For
example, a helmet-mounted display physically subtends less than a
square foot but provides high brightness capability (e.g., 30 fL).
The surface area of a large dome display may extend over a thousand
square feet and the luminance may be on the order of a moonlit
night (< 1/2 fL). 1In addition, the physical viewing distance for
each of these displays can have quite disparate effects on the
human visual system. This includes both static properties, such as
the focusing of the eyes, and dynamic properties such as optical
flow rates.

The multidimensional characteristics of display devices can
only be critigqued with the knowledge of how the visual systenm
employs or combines these parameters. Research into understanding
how physical display parameters interact with the human visual
perception is fragmented, concentrating on individual components of
the process (e.g., contrast, luminance, and color thresholds).
This analytical approach, however, is practical only because of the
complexity of the human visual system and brain as well as the
combinatorial ranges of the individual factors within the image/
display which affect perception.




At the receiving end of the visual communications channel, the
human visual system affords the highest rate of information
transfer between machine and human. Because of this fact and the
advances in the ability to store and transmit information visually,
there is a renewed interest in developing numerical measures or
metrics which capture the perceived quality of this visual transfer
of information.

The ultimate goal of the metric approach would be to provide
a unidimensional scale of image quality where display devices could
be compared with one another for universal use. More practically,
though, it is likely that metrics could be developed for a variety
of visual tasks (e.g., monitoring, dynamic tracking, target
detection, viewer pretfterence). The image quality from a display
device would then be a point in a multidimensional space with the
dimensionality governed by the number of tasks.

Experimental and operational definitions of image quality rely
upon human performance data and observer preference or ratings for
empirical validation (e.g., Snyder, 1985). As mentioned, though,
from an analytical viewpoint, the aesthetics of an image may have
little to do with an observer’s ability to detect or react to a
target presented within an image. Experimentalists should be aware
of this potential delineation in the two types of data (performance
vs. preference) and generalize appropriately when collecting data
and testing metrics.

To date, much of the experimental work performed in image
quality uses correlational techniques to affirm the validity of
newly developed metrics. Because of the types of data being used
(e.g., preference data which may have only ordinal validity), use
of interval-level statistics such as a Pearson Correlation
coefficient are tenuous at best.

Currently, it is fairly straightforward to form a "partial
ordering" of image quality (i.e., this display is at least as good
as that display) based upon the comparison of a single physical
display dimension (e.g., resolution, luminance) given all other
display parameters are equal across displays. The more pertinent
questions in image guality, however, are in evaluating trade-offs
across display dimensions (e.g., luminance versus resolution) when
determining image quality. Figure 2 is an example of trade-offs
across dimensions. In Figure 2, the Michelson Contrast or
modulation depth (introduced in the subsection "Luminance
Modulation: Contrast Measures") has been measured for two display
devices, the Display for Advanced Research Training (DART) (Thomas,
Reining, & Kelly, 1990) and a limited field-of~view (LFOV) dome
display in use at the Armstrong Laboratory, Williams AFB, AZ. If
either display had better modulation at all spatial frequencies,
that display device would be assumed to provide better image
quality given all other parameters were equal (e.g., luminance,
color, temporal properties). However, in Figure 2, the DART
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Lp:ovides better contrast at spatial frequencies less than 3 cycles/
¢ yree of visual angle. The LFOV provides better contrast at
<,atial frequencies greater than 3 cycles/degree of visual angle,
suggesting better resolution in the LFOV (assuming equal luminance
- .rabilities).

Empirical results obtained by casual reports from observers
<uggest the DART is preferred to the LFOV. Most likely, though,
this preference is a result of the luminance in the DART being
aprroximately an order of magnitude greater than the LFOV. From a
vraotical standpoint, it will be unlikely that the image quality of
. .isplay devices can be compared based upon changes in only one
vc: ateter (e.g., the display MTF). An image quality metric must
* ..n be able to integrate information across all these dimensions
‘e.g., low frequency contrast, resolution, luminance) in order to
be valid across a wide range of display devices. Answers to image
guality questions, such as that posed in Figure 2, will require a
nultidimensional approach to image quality research.

Visual displays employed in flight simulators represent a
subset in the display domain with unique characteristics pertaining
to image requirements. For many training applications in flight
simuletors, it is crucial that the field of view be as large as
possible. In many instances, this translates into maximizing the
physical size of the display, which also indirectly affects other
primary display parameters, including luminance and resolution.

The traditional approach to determining image quality, dating
back to Schade (1956) and previously to the Strehl ratio (see
Chapter 2 of Biberman, 1972), has focused on the MTF as the primary
driver in development of an image quality metric. 1In this initial
report, we will explore this premise (i.e., the use of only the
display MTF as a predictor of image quality) more closely. The
proposed methodology will consist of filtering static, achromatic
images with mathematically derived display MTITFs. Empirical
observation and comparison of the resulting images may then be
coinpared with metric predictions.

‘The iugic above directs our attention only to the display MTF
os a predicteor of image quality. The display MTF may be used as an
indicator of the quality of the display, independent of the
original image and observer characteristics. Realistically,
hswever, the display MTF characteristics are important only in the
deternmination of image quality to the extent that the criginal
irage and the human observer capture or weight the same
information. For example, a display device that can pass high
spatial frequency information is of little practical use if the
original images consist of information below 12 cycles/degree of
vicual angle. Toward this purpose, this report also identifies
betih iwage and observer visual system characteristics. These
characteristics are analyzed with respect to their effect on the
display MTF. 1In the next section, the rationale for use of the MTF
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in image quality prediction is developed through the introduction
of a Linear Systems approach.

DISPLAY MODULATION TRANSFER FUNCTION AND LUMINANCE MODULATION:
A LINEAR SYSTEMS APPROACH

Linear Svgtems Matrix Representation

The luminance profile of a visual display along one spatial
dimension (vertical or horizontal) can be represented as a waveform
which varies continuously in luminance as a function of spatial
location (e.g., Y(x) where x denotes location and Y denotes the
luminance at that location). This waveform can be mathematically
represented in the frequency domain by the Fourier Transform of
Y(x):

F(f) = f" Y(x) e (30 gy, (1)

-

Equation 1 is simply a decomposition of the luminance profile,
Y(x), onto a set of basgis functions, denoted by e*®, In this
instance, the basis functions redistribute the one-dimensional
waveform in the spatial frequency domain. A simple analogy is that
our position in space can be represented in three dimensions (three
basis functions). These basis functions are not unique and many
alternative ways of representing the positional information exist.

1ln a discrete or digitized version of the luminance profile
representation, such as would be used to represent digital-to-
analog codes (DAC) on a raster line of a display, the luminance
values could be represented by a vector <Y,> of length N. Here p
denotes the nth position on the raster line with a spacing of T (in
the desired units of visual angle or 1linear distance between
elements on the screen). The corresponding frequency
representation would be:

N-1
F(kw) = ¥ Y,,07°™ for k=0,1,...N-1 (2)

neo

where 1 = 27/NT = 2nf is a measure of frequency separation between

the samples. We denote the discrete Fourier Transform of the
vector <Y,;> n=0,N-1 by the vector <F,,> k=0,N-1 and k represents a
position on the spatial frequency axis. If the raster 1line

subtended X degrees of visual angle, the center~to-center distance
between individual elements or pixels would be X/N in degrees of
visual angle where N represents the number of elements in the




vector. In the frequency domain, the theoretical highest spatial
frequency represanted would be N/(2X) cycles per degree of visual
angle because a cycle requires an on-off sequence. The frequency
separation betwesn individual spatial frequency components would be
1/X cycles per degree of visual angle and there would be N/2
positive spatial frequency components and N/2 negative spatial
frequency components.

To approximate the luminance modulation across the width of
the field, the frequency-based representation may be used with a
number of the high frequency components left out of the signal
(i.e., a low pass filtering process). This procedure is equivalent
to performing polynomial regression (see Fig. 3) where complex
functions are approximated by polynomials which typically contain
fewer parameters, and thus can be represented more efficiently.
This data compression technique is one advantage of using Fourier
analysis to represent signals in a dual space mode.

Linear systems analysis provides a computationally efficient
method of representing and predicting signals which have undergone
linear (or approximately 1linear) transformations. A 1linear
transformation occurs when the output, Y,, is simply a 1linear
combination of the input,

N

Y, = Ea,x, (3)

where x, represents the input and a, represents the coefficients in
the linear combination. The input in our case is the two-
dimensional static luminance profile. 1In the discrete case, then,
we assume that the output luminance for a single pixel is a linear
combination of the input (e.g., DAC values) at individual pixel
locations.

In a truly linear system, the coefficients are independent of
other parameters (e.g., location on the visual display, display
luminance), but true linearity is rare in practice. For example,
no practical display devices are truly homogeneous in luminance,
contrast, resolution, and color across the entire display. In many
instances, though, approximate linearity is assumed and system
coefficients (i.e., a,) are approximated by using measurements from
the center of the display or by averaging across measurements taken
at different locations from the display.

As an example of a linear system, let us suppose that we wish
to represent the luminance output of a pixel (Y,) of a display from
the DAC values of the pixels (x;). If we assume that the
transformation is approximately linear (e.g., the voltage gamma of
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the display, spatial homogeneity) and that only the adjacent
neighbors of x, have any effect on the luminance output of Y., then
the linear relationship between luminance output and DAC input is
as follows:

de1  Je1

Yy = g: ; a,,%;; (4)
X1 2570

Based upon this equation, only nine nonzero coefficients are
required and these can be represented by the matrix A such that:

Q4,1 4.4,0 44,1
A = | 4 4,0 4,1 (5)

4,4 4,0 4,4

and y; and x; can be represented by the matrices

Y = Y14 X = X4 . (6)

We now say that Y is the convolution of A with X or that Y = AxX,
In the frequency domain, however, the convolution operation becomes
a simple multiplication such that if F(A), F(X), and F(Y) denote
the discrete, complex valued, Fourier transform of A, X, and Y,
then F(Y) = F(A)F(X). Y may then be recaptured through the inverse
Fourier transform Y = F!(F(Y)). The energy in the input and output
signals is denoted by the squares of the amplitudes of the signals.
For complex valued functions, these squares are obtained by
multiplying the signal (F(Y) or F(X)) by their complex conjugates
(F'(Y) or F'(X)). The energy in the output signal, Y, is denoted
by:

1
(FINF (N2 = |F(N]| = |FA) ||F0]. (7)

The Modulation Transfer Function of this one-dimensional signal is
defined as:

10




MTF = |F(A)| = ‘;88 : (8)

An additional assumption in this linear systems approach is that
:nergy is conserved between input and output. The result of this
8 that:

IF(Y) |peg = |F(X) |4y OF |F(A) g = 1 (9)

or the MTF is identically 1 at zero spatial frequency (i.e., f = 0)
or DC (Direct Current) frequency. If the system contains some gain
or loss (e.g., < 100% transmission of a lens), the modulation
amplitude at zero frequency will not be identically 1. As will be
discussed in the following section, 1luminance modulation on a
display device at zero or DC spatial frequency will never be
identically 1. Interpretations of display MTFs which normalize the
modulation curves will be shown to be ambiguous.

The previous explanation is a brief introduction to linear
systems and the MTF of a linear systen. This linear systems
approach is employed in representing luminance contrast. With
display devices, the device’s capability of maintaining contrast
with increasing fineness of detail is a major contributor to image
quality. Defining and measuring contrast, however, is not a
straightforward process. Various measures of contrast, their
relationship to one another, and their relationship to other
display properties are discussed next.

Luminance Modulation: cContrast Measures

Contrast is a measure of relative luminance variability
defined for some spatial extent. In the visual system, neural
mechanisms such as excitatory and inhibitory center-surround nets
are physiological evidence of contrast-related functions in the
visual hierarchy. In statistical entities such as a Normal
Probability Distribution, moments such as the mean and variance are
independent of one another. In visual perception, however,
sensitivity to contrast does change as a function of mean
luminance.

Although more definitions of contrast exist, three operational
definitions of contrast are commonly used in the literature. They
are as follovs:

C [ t ;b l [4 Lb ]
B c— B cceaesme— B e, O




Ly and L; represent maximum and minimum luminance, respectivel,.
Equations 10a and 10b have been popular in display manufacturer
guidelines and human factors work, respectively. Equation 10c has
been popularized by the physiological literature and hypothetically
relates a center-surround mechanism (e.g., Rogowitz, 1983) where
discrimination of signals is given by the difference in output
weighted by the average output (or twice the average) of the local
area. Equation 10c is also typically called modulation depth as
well as contrast. By measuring modulation depth of a sinusoidal
waveform on a display for a range of spatial frequencies, a
modulation depth curve is obtained. In most image quality work, a
modulation depth curve which is normalized to a value of 1 at zero
spatial frequency is referred to as the MTF of the display.

Note that, up to this point, no mention has been made as to
the spatial extent of any of our contrast measures. For a complex
image, then, the brightest luminance may occur at the edge of the
image and the 1lowest luminance may occur in the center. With
respect to the human visual system, defining the contrast between
these two points has very 1little meaning in any objective or
performance-related sense.

The Michelson Contrast or modulation depth was originally
defined for a sinusoid waveform where, for the most part, the
complete luminance cycle was contained in a local area. Peli
(1990) provides an introduction to contrast in complex images and
makes the argument that we should concern ourselves with localized
measures of contrast.

For the three contrast measures presented here (i.e., C, C;,
and Cy), it is useful to note that the three equations are
monotonically related to one another within a range of luminance
values. For example,

Cr - L, - L, C

C-l:Lc-lg =
L Ce*+2 L,+L, ™ (11)

= C and
b Lb R

C and C are affine transformations of one another (i.e., a linear
transformation plus a constant) but are not linear transforms of
one another f{rom a strict 1linear systems viewpoint. The
relationship between the Michelson Contrast, C,, and the other two
contrast measures is nonlinear. Any analysis of image quality
using one measure of contrast cannot be assumed a priori to hold
when using the alternative measures.

~ Given the monotonicity between the contrast measures within
defined ranges ot L., and L, many ordinal comparison findings will
translate across measures. In fact, for performance measures, a
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range of useful contrasts may be derived as a function of the task.
For example, Figure 4 is a rearrangement of target (a small circle)
detection data obtained by Blackwell (1946). He experimentally
determined size detection thresholds for circular targets as =z
function of contrast (C; = (L, - Lp)/Lp) and background luminance.
From the data in Figure 4, we can estimate that (a) increases in
background luminance yield 1little improvement in performance beyond
approximately 11 fL of background luminance, (b) there is little
improvement in detection performance for ¢, > .3, and (c¢)
performance is asymptotic for C,; around 1. Such data combined with
equivalences provided in Equation 11 allow us to estimate that when
working with Michelson Contrast, our range of interest is 0 < Cy <
.86 in accounting for performance variability in detection tasks.
This analysis pertains well to detection tasks but is not
necessarily relevant to suprathreshold tasks.

Michelson Contrast is the typical unit of measurement for
empirical development of MTF or modulation depth curves.
Modulation depth or MTF curves are plots of the Michelson Contrast
as a function of the spatial frequency of a sinusoidal waveform
displayed on a device. At zero spatial frequency, the Michelson
Contrast is (Ly,w~Liay) / (LyuxtIhvae) where Ly,x and L,g are the maximum
and dark luminances of the display, respectively. !ote that for
spatial frequencies above one cycle per degree of visual angle, the
Michelson Contrast will be an estimate of contrast localized within
an area of one degree of visual angle. This is a spatial area
which exists well within the fovea and we may reasonably assume
this to be a localized contrast.

Many manufacturers provide a maximum-to-minimum (i.e., I, /L..)
contrast ratio which can also be used to estimate the DC Michelson
Contrast or the Michelson Contrast on the Y-axis. For example,
with large projection displays, a i0-to-1, bright-to-dark contrast
ratio is quite good. This would translate into a (10-1)/(10+1) =
.82 Michelson Contrast Value. The .82 contrast or modulation
depth, though, is only for low spatial frequencies. It provides no
information concerning available contrast for target subtending
only a few minutes of visual angle. Small helmet-mounted displays
are able, in some instances, to generate 100-to-1 contrast ratios.
This translates into a .98 Michelson Contrast at the DC or zero
frequency level.

Because of the actual environment within which the display
resides (e.g., a large dome), ambient lighting may contribute to
manufacturer specifications for L,,x and L. This can be
approximated algebraically by adding a constant (the ambient
illumination reflected off of the display) to the maximum and
minimum luminance values. Ambient illumination will always lower
the Michelson Contrast and requires us to consider the environment
immediately surrounding the display.
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One of the ambiguities discussed later in this report concerns
the normalization of the modulation depth curves so contrast is
identically 1 at 2ero spatial frequency. This normalization
requires that the Michelson Contrast, or modulation depth, at all
frequencies be divided by the modulation at zero or DC frequency.
This normalization allows the contrast or modulation depth curve to
appear as an MTF. For image quality purposes, normalization of
these curves renders them ambiguous as parameters in a metric for
comparison with other displays simply because the normalization
coefficients differ across displays (Evans, 1990).

The two methods (direct and indirect) of empirically
generating modulation depth curves or MTFs are discussed in the
next section. The indirect method generates an actual MTF curve
and, if this curve is used to represent Michelson Contrast or
modulation depth, it must be unnormalized (i.e., multiplied by the
modulation depth for zero frequency at all spatial frequencies).
The following section is not meant to be a technical overview of
MTF measurement but is included to show pro:lems inherent in the
methods of measurement which can have serious consequences on their
use in metrics. For a more comprehensive review of MTF
measurements, see Kelly (1992), Veron (1985), or Beaton (1989).

c n is i : Direct Versus

Indirect Methods of Meagurement

The physical size of displays used in flight simulation may
vary from a helmet-mounted display (HMD) on the order of a few
square inches to a full field-of-view, 24-foot diameter dome which
covers a surface area of approximately 600 sgquare feet. As
expected, the ability to project a luminance profile onto these
media can easily vary by a factor of 100 (e.g., 1/2 fL on some
large domes to 50 fL on an HMD). Along with the luminance
capabilities, the observer viewing distance also varies widely
across display device. For perceptual purposes, the observer
viewing distance is critical to any analyses as this helps
determine the actual size of the retinal image.

For a display which extends a linear distance, L, in the
vertical or horizontal direction, and a distance, d, from the
observer, the visual angle subtended in the respective direction
is:

2 = i = -1 _L_
t;an(z) 25 or 0 = 2tan [2D]' (12)

Mathematically, when the argument of the tangent function is quite
small, the approximation tan(x) = x holds where x is measured in
radians (27 radians = 360 Jdegrees or 57.3 degrees/radian). In
Equation 12, this simplifies to:




0 L
tan(3) = 2 * 35

radians or 6 = in radians. (13)

ol

Converting Equation 13 into degrees of visual angle yields:

0 --§13§£ degrees of visual angle. (14)

Thus, for small visual angles, changes in the observer distance to
the viewing screen are linearly related to changes in the visual
angle subtended.

Equation 13 provides a standardized approximation for
estimating the visual angle subtended by an image in the real world
relative to the observer’s eye. The visual angle subtended on the
retina from the human lens (6,) is not the same as the visual angle
subtended on the retina by the actual image (6,) (Westheimer,
1986). A better azpproximation is 6, =~ .826_,. This fact does not
change relative observations concerning real~-world images and their
analyses. However, it is pertinent when a discussion of neural
processes (e.g., receptor spacing, visual cortex mapping) comes
into play. :

Contrast functions, modulation depth curves, or MTFs are
usually reported or displayed (i.e., the unit on the x-axis of a
graph) as a function of spatial frequency in cycles per degree of
visual angle subtended from the user’s viewpoint. Less frequently,
these functions may be reported as a function of linear distance on
the actual viewing device or distance on the retina in millimeters.
Reporting them as a function of visual angle allows direct
comparison to visual system functions from the human (e.g., the
CSF). The drawback, though, is that the observer-viewing distance
is required for calculation, as shown in the previous paragraph.

If image quality is to be determined from the observer’s
viewpoint, the observer-viewing distance should always be
considered an integral part of the viewing apparatus. It is
plausible to imagine two display systems such that at a viewing
distance, D,, System A provides better image quality than System B,
but at distance D, > D,, there is no difference between the two
systems. Hypothetically, System A might provide noticeably better
high spatial frequency contrast than System B. As the viewer
distance from the displays increases, however, the contrast curves
are shifted toward the higher end of the spatial frequency curve
and the contrast improvement of System A over System B may be
beyond the resolution limit of the human visual system. 1In the
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limit, this argument is true for all display systems. As the
viewing distance approaches infinity, there will be no image
quality difference between displays.

In order to measure the contrast or modulation depth from a
display, two methods are typically used, the direct and the
indirect methods (see Beaton, 1989, or Kelly, 1992). In the direct
method, a luminance-varying sinusoidal waveform of a specified
spatial frequency is displayed on the viewing device. The peaks of
the input waveform should be set for the minimum and maximum
capabilities of the display device. A photometer is used to
measure the peaks, L., and valleys, L., of the luminance profile
directly off the viewing device for a discrete number of spatial
frequencies. For each data point, C, = (L., - L..)/(Lax *+ Laa) is
plotted as a function of the spatial frequency, generating a curve.
To obtain modulation at zero or DC frequency, the maximum luminance
and dark field or minimum luminance are als. measured from the
display and plotted as C,.

Because of the discrete nature of addressing many displays, it
may be preferable to measure modulation using a squarewave input
generated from pixels 1instead of sinusoids. The following
approximation from Schade (1987, p. 6) may then be used to estimate
the sinusoidal response from square wave responses:

1 1 1
r(f)+=r(3f)-=r(SL)+=r(71)
3 5 7 (15)

»

MTF(f) = — ] ]
4 -—
+ r(11r) 3I’(l.’if)

In Equation 15, MTF(f) is the MTF or sine wave response at f cycles
per unit of distance (e.g., 1linear distance or visual angle
subtended at the eye) and r(f) represents the square wave response
at £ cycles of the square wave per unit of distance. 1In addition
to the eye’s inability to respond to higher spatial frequencies,
the responge of the display also decays as the frequency increases.
Thus, the higher powers in the square wave response in Equation 15
tend to zero and are dropped from the approximation. For any
spatial frequency, £, the modulation resulting from the square wvave
will be an upper limit on MTF(f), the sine wave response.

The indirect method of measurement, as opposed to the direct
method, requires only a single measurement (in time) to generate
the modulation depth curve. In this method, a one-dimensional
transform may be estimated by displaying a single line (e.g.,
illuminating a row of pixels) at maximum luminance on the viewing
device. A spatial photometer is used to measure the luminance
transition from dark to light across this element. The Fourier
transform of this one-dimensional waveform represents modulation
depth over the spatial frequency axis. Using this method,
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modulation at zero frequency will be identically 1. All modulation
values must subsequently be multiplied by the normalizing
coefficient (L. -L.)/ (L., +L.) where L., and I, are the maximum and
minimum luminance values available from the display device.

There are numerous technical problems in wusing either
procedure (the direct or the indirect) to estimate modulation depth
curves. Conditions such as the maximum display luminance used and
the uniformity of the display represent two such hurdles. For
example, the shape of the modulation depth curve may vary as a
function of the L, value used. Using a maximum luminance value
which nearly overdrives the limit of the display system will yield
a higher contrast at the zero frequency or DC level but can also
yield less contrast at high frequencies. The answer to such
problems from the viewpoint of designing metrics is unclear. 1In
practice, display engineers tweak the display system to improve
subjective image quality. There is no analytical process which
compares to this empirical practice from a metric perspective.

Luminance modulation characteristics of devices such as
cathode ray tubes (CRTs) have been thoroughly studied (e.gq.,
Infante, 1985, 1986; Barten, 1984, 1985). In these devices,
luminance is typically generated when an electron beam(s) fall(s)
on a phosphorous surface which emits photons. In many instances,
a mask with holes in it constrains where the electron beam(s) may
fall. The dead spots between the holes in the shadow-mask
determine the "black" areas of the display, and the distance
between holes in the mask denote the pitch of the mask.

Murch and Virgin (1985) present a good introduction relating
the resolution and addressability of such displays. For such
raster displays, it is clear that when the screen or portions of it
are completely 1lit, viewers do not wish to see the individual
raster lines. Therefore, the luminance modulation of the display
at the frequency of the raster spacing must be below the observer
threshold. On the other hand, it would be desirable that when
alternate raster 1lines are 1lit, there is as much luminance
modulation as possible. The two competing demands require a trade-
off in display design.

The modulation depth curves (or MTFs) estimated from the
direct and indirect measurement methods form the cornerstone of
image quality mwetrics. Theoretically, tihen, it would be of
interest to generate different display MTF shapes and test how
these MTFs affect subjective or empirically measured image quality
as well as the numerical metrics. In the next section, a
mathematical formulation for estimating MTFs which allows us to
move easily between two-dimensional space and the spatial frequency
domain in two dimensions is introduced. 1In later sections of this
report, this formulation willi be used to generate a range of
testable image quality scenarios.
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computation of Mathematically Derived MTFs

For work with digitized images in the study of image quality,
it is useful to design computationally efficient filters to
approximate the empirically obtained MTFs. Traditional Fourier
transforms may be used toward this purpose and recent work in
display measurement (e.g., Barten, 1984, 1985, 1988a; Infante,
1985, 1986) has shown the approximate relationship between display
parameters (e.g., electron sp : size) and computational formulas.
Equation 16 below shows the correspondence between a point spread
function in the spatial domain on the left and its Fourier
transform on the right.

'Ix)
- R, b = = be£? (16)
£(x) a\r:e <=> F(f) = ae

The parameter "n?/b* in the exponent of the point spread function
(i.e., the leftmost equality in Equation 16) can be related to the
distribution of current density in a CRT for a Gaussian spot (e.g.,
Barten, 1985). By setting n?/b = 12/d*> (or b = n’d?/12), where 4
denotes the width of the electron spot of a CRT beam (typically in
millimeters) at which the Gaussian profile is at 5% of its maximum,
Equation 16 is an approximation for a CRT display MTF. Note that
in Equation 16, the units of d must be the same as the units of x,
and the units of 4 and x are both the inverse of the units of f.
In the spatial domain as well as with f in the frequency domain, 4
must always cancel with the units of x.

MTFs generated using the right side of Equation 16 can be used
to approximate a variety of empirically measured MTFs. The
function in the leftmost equality of Equation 16 represents a
convolution filter in the spatial domain which can be used to
filter an image in the spatial domain. In a later section, curves
generated by the right side of Equation 16 will be used to
approximate hypothetical display MTFs using specific values for
parameters a and b. The left side of Egquation 16 will then be
applied to images as a convolution filter, simulating the process
of the images being viewed through the hypothetical display.

When viewing filtered images on a display (e.g., CRT), a
double-pass process (i.e., two sequential filtering processes) is
being applied to the image. Not only does the original filtering
affect the quality of the image but the viewing of the filtered
image through a second display is equivalent to filtering the image
again (i.e., a doubla-pass process). If our intention is to
evaluate the effect of a specific MIF on the quality of images,
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this MTF must be multiplied by the inverse of the viewing display
(vd) MTF (i.e., MTF,(f) X MTF',(f)). The resulting MTF would then
be used in the image filtering process and viewing ¢f the filtered
image through the display device would then complete the double-
pass process (i.e., MTF,(f) X MTF',(f) X MTF,(f) = MTF,(f)).

One of the problems in applying the mathematical filters to
actual images involves the premult#Pliers on both sides of Equation
16, 3 on the right side and a(n/b)~ on the left side. If the left
side of Equation 16 is used to filter an image in the spatial
domain, the energy from the filter (i.e., the integral) must
evaluate to identically 1 in order to retain the same overall
energy or luminance. In statistical terms, the left side of
Equation 16 must be a probability density function (PDF). If the
PDF is normal or Gaussian, it is required that a = 1 in the left
side of Equation 16 in order that the PDF integrate to a value of
1 over the limits of X. When a = 1 in the rightmost equality of
Equation 16, the function will then evaluate to 1 when f =0, i.e.,

1 e, =1. (17)

Unless the DC or zero frequency value of the MTF is
identically 1, the area under the convolution filter in the spatial
domain will not be identically 1, and the filter will either add or
subtract energy from the signal. In filtering imagery, this
corresponds to changing the verage luminance of the image. Thus,
in order to simulate mo° ‘ration of the display MTF without
varying the average !umin. . of the image, a single restriction
(i.e., a = 1) on Equation 16 is required. With this restriction,
Equation 16 provides an efficient method of approximating actual
display MTFs. As previously discussed, the spatial filter from
Equation 16 can be used to filter digitized images, simulating the
effect of viewing the images through the appropriate display
devices.

The characterization furnished in Equation 16 provides a
simple computational mechanism for moving between the spatial
domain and the frequency domain. Given the MTF of an actual
display, the rightmost equality of Equation 16 may be fit to the
MTF curve (using b as a parameter) and images may be filtered in
the spatial domain using the leftmost equality of Equation 16. The
filtered image will be an approximation of how the image would
appear in the display of interest. The drawback with this approach
is that the y-axis intercept of the simulated MTF must be 1 (or
very close to 1 for the approximation). Looking back to Figure 2,
the comparison of the DART display with the dome display, it is
apparent that the approximation will not suffice for some displays.
Thus, this approach only simulates the effect of display MTFs on
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imagery for a subset of MTFs whose y-axis intercept in the spatial
frequency domain is quite close to 1.

The method provided in this section allows us to simulate the
effect of a variety of display MTFs on static, achromatic imagery.
Examples of other methods used to vary display MTFs are the
defocusing of the electron spot in a CRT (Barten, 19£7), variation
of luminance and picture size (van der Zee & Boesten, 1980),
changing the gamma characteristic of a display (Roufs, 1989), the
addition of ambient light (Barten, 1988a), and the addition of
noise (Barten, 1991). From these and other examples, the
difficulty in manipulating display parameters and obtaining
performance measures in a controlled, experimental environment
becomes more apparent. The inability to manipulate specific
display parameters while controlling other parameters is one of the
biggest drawbacks in experimental studies of image quality,
especially multidimensional investigations. Next, we turn our
attention from characterizing the importance of the display device
to a discussion of the final subsystem within the image quality
systems framework--observer characteristics.

LUMINANCE TRANSFER CHARACTERISTICS OF THE HUMAN VISUAL BYSTEM

The systems approach to image gquality (see Fig. 1)
incorporates the human eye/brain system as the third and final
filtering component. A metric representing image quality
preference as determined by humans should be filtered or weighted
accordingly. Research (see Hood & Finkelstein, 1986, for an
overview) indicates that the human visual system filters are a
function of: (a) spatial frequency, (b) average 1local scene
luminance, (c) retinal eccentricity, (d) size of the test image,
(e) wavelength or color, and (f) motion or temporal properties.

The complexity of representing the human eye-brain filter as
a function in a é6-dimensional space necessitates that we simplify
the filter. From a linear systems approach, an MIF surfaces as a
logical approach for filtering the incoming 1luminance-varying
signal. Measuring the MTF of the eye-brain subsystem is quite
complex and involves many assumptions. Of the six factors noted
above, the traditional MTF (of the optics of the eye alone) is
measured only as a function of spatial frequency with all other
factors held constant. However, individual MTFs may be measured
for changes in each of the six listed parameters but would result
in an even more complex task. It would also negate the simplicity,
and in many instances the assumptions (l.e., a lack of linearity),
afforded by the linear systems approach.

Traditionally, in image quality the filtering or weighting
component used for the eye-brain subsystem is the CSF. The CSF at
fraquency u, CSF(u), is the inverse of the amount of contrast
(Michelson Contrast) required to detect a sinusoidally varying
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luminance pattern of frequency u. The human CSF, as does the MTF,
also varies as a function of average luminance, retinal
eccentricity, wavelength, test pattern size, and temporal
properties (e.g., Glenn, Glenn, & Bastian, 1985). Measurement of
the CSF also requires psychophysical procedures (e.g., ascending
staircase, method of adjustment) in order to estimate individual
data points of contrast thresholds. Measuring the MTF of the eye
requires even more complicated procedures.

Note that the emphasis in this section is to compare the CSF
function with the MTF of the eye as filters for image quality
metrics. This specific comparison takes root from the idea that
the CSF is a threshold measurement and the MIF is a suprathreshold
measurement. The distinction relates well to the typical dichotomy
in empirical image quality assessment, performance tasks which are
intuitively associated with threshold behavior, and subjective
preference which is more closely associated with suprathresholad
behavior.

In evaluating the effect of employing a CSF or an MTF of the
eye as a filter on an image quality metric, the effect can be
assessed independently of any empirical task. That is, either
function (CSF or MTF) can be substituted into an equation and the
results compared. This comparison is one of the goals of this
section.

As a final caveat, note that in employing the term MTF in this
section, the term "eye" has closely followed. Data included in
this section on the MTF of the visual system are only estimates of
the MTF of the optics in the eye. These estimates do not include
any information concerning processing which initiates at the
photoreceptors and continues through the visual pathways in the
cortex. Further discussion concerning this 1incomplete
representation is provided in the MTF section which follows.

The contrast Sensitivity Function (CSF)

CSF is the psychophysical weighting function of the human
eye/brain system traditionally used in image quality metrics. To
measure the CSF, 1-dimensional sinusoidal waveforms varying in
luminance are presented to obscrvers. The luminance variation in
the waveform usually occurs in the horizontal, vertical, or oblique
directions (see Westheimer, 197C). For a sinusoid of a specified
spatial frequency, the CSF at that frequency is the inverse of the
amount of Michelson Contrast, (L.,~L..)/(L..*+L.,), necessary to
discriminate the pattern from a homogeneous pattern. By measuring
the contrast threshold and computing the inverse at a variety of
spatial frequencies, the points may be plotted as a function of
spatial frequency. Figure 5 denotes two empirical CSF curves
obtained for two average luminance levels (.1 cd/m?> and 10 cd/m?)
that are replotted from van Meeteren and Vos (1970). The two CSFs
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in Figure 5 represent data averaged over two observers using
horizontal and vertical sinusoidal waveforms which covered a

17° X 11° field of view. Note that empirically measured CSFs are
sensitive to many methodological parameters (e.g., test patch field
of view, orientation of the pattern) as are most psychophysical
thresholds.

With respect to image quality, the major point of interest in
Figure 5 is the shape of the CSF. It appears as an inverted "U"
function which typically reaches its maximum between 3 and 8 cycles
per degree of visual angle, depending upon the average luminance of
the waveform. If the CSF is used as a weighting function, midrange
spatial frequency information will be emphasized relative to low or
high frequencies.

It is interesting to note that the relative de-emphasis of low
spatial frequencies is sometimes neglected. Infante (1985), for
example, approximates the inverse of the CSF (measured at 10 cd/m?)
with the function .0007655e'% (see Fig. 6) where f equals spatial
frequency in cycles/degree of visual angle. This approximation
neglects any 1loss in contrast sensitivity at 1low spatial
frequencies.

The purpose of the examples shown here is to emphasize the use
of the CSF or eye MTF in an image quality metric. 1In metrics such
as the square root integral (SQRI), the CSF is a multiplicative
weight. 1In models such as the Modulation Transfer Function Area
(MTFA), the CSF is a subtractive threshold. 1In all applications,
though, the capability of the display must be modified according to
how the visual system will use the information. 1In addition, the
manner in which the weight is applied should be conceptually
interpretable.

The CSF has received more study than the MTF of the eye and
this may be one recason why it gained popularity in use over the MTF
of the eye. Many authors (e.g., Glenn, Glenn, & Bastian, 1985)
have called the CSF the transfer function of the visual systen.
The CSF represents the psychological strength of the physical
signal relative to the strength of the signal at other frequencies
for the minimum detectable amount of contrast. The CSF may be the
appropriate visual system filter to use in image quality metrics
with detection tasks, but the MTF of the eye/brain system would be
logically more appropriate for suprathreshold tasks. The fact that
the shape of the transfer function would change from threshold to
suprathreshold conditions violates the assumption of linearity as
a function of scene luminance.

As mentioned, ¢the human CSF is a highly variable
psychophysical function. Not only does it vary as a function of
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stimulus duration, field size and orientation, temporal properties,
retinal eccentricity, and wavelength, it is also highly variable
across observers (e.g., sometimes by a factor of 10 at individual
frequencies). For use in equations, then, the CSF is always an
average of many observers and measured for a standardized setting.

For predictive use, there exists a number of mathematical
approximations to the CSF. Beaton (1989) gives the following
approximation:

CSF(F) = blexplb,f + b,f + b,f] (18)

where f is spatial frequency in cycles/degree of visual angle,
b=.0017062, b;=.2016188, b,=-.0023161, and b,=.0000002.

van Meeteren (1973) developed a numerical estimation for
contrast sensitivity as a function of both spatial frequency and
average luminance from data reported by van Meeteren and Vos
(1972) . Barten (1990) used empirical CSF data obtained by Carlson
(1982) to include field size as a predictor of contrast
sengitivity. The combined form of these efforts yielded the
function:

CSF(f) = (A) (f)e™ (1 + (c)e®]® (19)

where A = 540(1+.7/L)"%/(1 + 12/(w$1+f/3)2)), B = .3(1+100/L)", C =
.06, L denotes luminance in cd/m’, w is the angular size of the
display area calculated from the square root of the picture area,
and £ denotes spatial frequency in cycles/degree. Figure 7 shows
a number of curves generated from Equation 19 with the field-of-
view parameter, w, set to approximately 14°. For w > 10°, there is
little variation in the CSFs. As the field of view grows smaller,
sensitivity is lowered, or bows downward more, at the lower end of
the spatial frequency spectrum.

In Figure 7, observe that peak sensitivity drifts from
approximately 2 cycles/degree at mesopic levels of illumination to
approximately 4-1/2 cycles/degree at photopic 1levels of
illumination. This shift in peak sensitivity is a 1logical
consequence of center-surround neural mechanisms at the ganglion
layer of the retina. Within these mechanisms, spatial summation
occurs in the center and the surrounding cells inhibit firing from
the central, excitatory units. At lower luminance levels, lower
frequency channels with excitatory components that integrate over
larger areas of the ret:na are likely candidates for performing the
detection process. Charnels which match the light and dark regions
of the sinusoid pattern may be implicated here. The excitatory
portion of the center-suirround mechanism could match the bright
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portion of the signal and the inhibitory component of the center-
surround mechanism falls upon the darker parts of the sinusoiaq,
causing less inhibition in the channel output.

Many researchers (e.g., Campbell & Robson, 1968) suggest that
the human CSF is an envelope of approximately seven independent
spatial frequency channel analyzers (see Fig. 8). Carlson and
Cohen (1980) and Carlson (1988) devised an image quality metric
based upon just noticeable differences (JND) in Michelson Contrast
for each of seven spatial frequency channels located at .5, 1.5, 3,
6, 12, 24, and 48 cycles/degree of visual angle.

Figure 9 shows an example for two representative display MTFs.
The JNDs in Figure 9 are empirically obtained using sinusoidal
waveforms and measurements of difference thresholds (for Michelson
Contrast) at each of the seven spatial frequencies. In their
model, the metric is the cumulative number of JNDs in all of the
spatial frequency channels which lie below the display MTF.

In other metrics of image quality, the CSF is employed as a
multiplicative weight in the spatial frequency domain. More
contrast sensitivity at a given spatial freguency is used to imply
that the human emphasizes this band of spatial frequencies more
heavily in determining image quality. In such instances, when
making ordinal comparisons of image quality across display devices,
the CSF need only be unique up to a multiplicative constant (i.e.,
CSF,(u) = A X CSF(u)). Thus, if only an ordinal metric of image
quality is desired, the CSF may be scaled up or down (i.e.,
normalized) to any constant.

Mathematically, this conjecture is as follows. Let two
displays be represented by MTF, and MTF, with their respective
metrics given as follows:

10, = [clcsF(u) MTF(u)] du (20)
u
and
10, = [GlesF(u) MTF(u)) du. (21)
u

In Equations 20 and 21, G is a monotonically increasing function of
the product of the CSF and MTF where both the CSF(u) and MTF(u) are
greater than zero for all u, and u is spatial frequency in cycles/
degree of visual angle. If we multiply or scale the CSF functions
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by a constant, C, at all spatial frequencies, the resulting image
quality metrics are:

Upax
I00 = fa[cx CSF(u) MTF(u)] du (22)
ue=0
and’
Upax )
Io; = fG[CXCSF(u)MTF(u)] du. (23)

u=0

For any ordinal ordering of IQ, and IQ,, the same ordering also
applies to IQ,” and IQ,". For example, if IQ, < IQ,, then IQ,’ < IQ,.
This monotonicity across the scaling of the weighting factor allows
us to scale the CSF for comparison with other multiplicative
functions (e.g., the MTF of the eye). We can then look at their
relative effect on image quality metrics.

The CSF approximation in Equation 19 permits us to weight
image quality metrics from the observer viewpoint as a function of
spatial frequency and average luminance. Other visual field
parameters (e.g., retinal eccentricity, orientation) are held
constant for the CSF measurement but will vary considerably and
unmanageably in reference to general image quality. The CSF
represents visual system sensitivity at a spatial frequency as the
inverse of the contrast threshold at that spatial frequency. It is
the relative transfer of physical quantities (contrast) across
spatial frequencies required to obtain a specific psychological
response (detection or discrimination). As many critics point out,
though, the transfer function at the threshold level need not be
equivalent to the transfer at suprathreshold levels. As should be
pointed out, though, if the transfer function does change as a
function of some variable (e.g., average field 1luminance),
linearity is violated. The next section introduces empirical
research used in estimating the MTF of the eye.

The Modulation Transfer Function (MTF) of the Eve

The linear systems approach posits that the complete system
response of a linear system to an input in the frequency domain is
the product of the individual transfer functions of the components
or subsystems. This approach has popularized the notion of the MTF
in general. In image quality work, critics have questioned why the
CSF has been employed as a filtering function rather than the MTF
of the eye/brain system.

This section develops the use of the MTF of the eye as an
alternative to the use of the CSF as a weighting function in image
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quality metrics. Of critical importance here is that the
measurements discussed in this section include only the effects
from the optics of the eye and nothing beyond this (e.g., neural
mechanisms, transduction, cortical processing) in the visual
pathway.

There is research suggesting that the neural systenm
compensates for the MTF of the eye. Snyder and Srinivasan (1979)
argue that for suprathreshold viewing conditions, neural processing
compensates for optical degradation as seen in the MTF of the eye.
For suprathreshold viewing conditions, they suggest a flat transfer
function, a concept which when employed in a metric would mean
essentially no compensation of the incoming signal by the human
visual system. The basis for their argument comes from experiments
which matched sinusoidal gratings of different spatial frequencies
for their apparent contrast (Blakemore, Muncey, & Ridley, 1973;
Georgeson & Sullivan, 1975; Kulikowski, 1975; Watanabe, Mori,
Nagata, & Hiwatashi, 1968). At suprathreshold conditions, apparent
contrast does not vary as a function of the spatial frequency of
the sinusoid.

Implications from the argument above are that neither the CSF
nor MTF of the eye are applicable filters, at least for supra-
threshold activities in image quality. Empirically, there is
little evidence suggesting that either filter represents what
occurs from the perspective of the visual system and image quality.
A plausible approach is *to design and conduct empirical studies
which are able to make predictions and test metrics based upon
interchanging the filters. From this perspective, then, it is
still reasonable to study how the use of the MTF of the eye in
image quality metrics affects predictions about image quality.

Obtaining empirical estimates of the MTF of the eye is more
complex than obtaining estimates of the CSF. First, note that the
CSF is a psychophysical function for the complete visual systen.
The MTF, as presented here, is an estimate of the transfer function
of the optics in the eye alone. In the past, researchers employing
a linear systems framework were aware that processes in the visual
pathway such as transduction were inherently nonlinear. Because
the optics of the eye is an optical system (i.e., a system of
apertures and lenses), a linear systems approach for describing the
filtering of the eye was a natural approach. The following data
represent only a development of the MTF of the eye and not of the
entjre visual system.

Campbell and Green (1965) and Campbell and Gubisch (1966)
used interference fringes to form luminance-varying sinusoidal
patterns of bhigh contrast directly on the retina. Through
measurements of the return or retinal reflection on this signal,
they were iable to estimate the MTF due to the optics of the eye.
Figure 10 shows a family of MTF curves as a function of the spatial
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Gubisch (1967) Estimate of the MTF of the Eye
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frequency of the sinusoid pattern and the pupil or aperture size.
Note that as with any optical system, an increase in pupil or
aperture size has the effect of decreasing resolvability.

Veron (1985) reported an estimate for the MTF of the eye which
is as follows:

MTF(f,) = e ¢ (24)

In Equation 24, f, is the retinal spatial frequency and may be
calculated as f, = (7Lu) /.80 where u is the number of cycles per
unit of distance on the display and L is the observer distance to
the screen measured in the same units as u. L and u may be
bypassed, and MTF(f,) can be plotted as a function of £, in cycles
per degree of visual angle. Figure 11 shows such a plot of
Equation 23 along with the MTF for a 6.6 mm diameter pupil from
Gubisch (1967). The height and shape of two curves in Figure 11
closely resemble one another.

The Use of the CSF Versus the Eye MTF in Image Quality Metrics

Some researchers currently employ image quality metrics as if
the numbers derived from them existed at the interval level. For
e»xample, consider Figure 12 as an ordering of four display devices
(A, B, C, and D) on an interval-level metric. In Figure 12, assume
the output of a metric is said to be in IJNDs and devices A, B, C,
and D receive scores of 10, 15, 20, and 27 JNDs, respectively. If
the scales satisfy an interval level of measurement, device D is
more preferable to device C than device B is to device A.

A more rational proposition at this time is to assume that
image quality metrics satisfy only an ordinal level of measurement.
In Figure 12, then, the only information available is that, in
terms of preferences for devices, D > C > B > A where the "greater
than" sign can be thought of as "is preferred to." Only after
obtaining more complete knowledge of the weighting schemes used by
the visual system should an attempt be made to extend the scale
beyond an ordinal level of measurement.

If metrics are used as ordinal scales and the filter applied
from the human subcomponent is a multiplicative weight, the filter
may be scaled as suggested in the section on "The Contrast
Sensitivity Function." Using these assumptions, it is not the
absolute height of the weighting function or filter that matters
but only the relative height across the spatial frequency axis.
This allows us to scale both the CSF and the MTF of the eye to a
height of 1 at their relative maximum and compare them on a single
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Display: A B Cc D

Figure 12
Metric Ordering on Interval-Level Scale
for Four Display Devices

graph. Figure 13 shows a comparison of Equation 24 (approximation
of the MTF cof the eye) with Equation 19 (CSF approximation) as a
function of spatial frequency when the heights of the curves are
normalized to 1. Figure 14 shows the same comparison as a function
of the natural log of spatial frequency. Comparison of Figure 13
with Figure 14 shows the relative weighting of display information
by spatial frequency when we change from a normal integration
scheme to a 1logarithmic scheme. The importance of such a
comparison is discussed in the following section where effect of
image content on quality is made clear. 1In Figure 15, the CSF and
the MTF from Figure 13 are multiplied by a hypothetical Gaussian
Display MTF. Figure 16 is the same as Figure 15 except that the x-
axis is a logarithmic scale.

In Figures 12 through 15, image quality is proportional to the
area beneath the curves. The primary interest is in where (what
spatial frequency ranges) most of the are2 below the curves are
with respect to spatial frequency. From these graphs, one can
generally infer that image quality is conprised mostly of low
spatial frequency information. The findirg is more robust when
using the MTF of the eye as opposed to the CSF and when using a
logarithmic integration scheme as opposed to a normal integration-
across~-spatial frequency (Figs. 14 and 16 versus Figs. 13 and 15).
The effect of changing the integration scale from normal to
logarithmic is to force the relationship between image quality and
spatial frequency to follow a Weber-like function. For sound in
the auditory sense and 1luminance in the visual sense, the
psychological perception of the physical intensity of these
variables is linearly related to the logarithm of these physical
quantities. For the present work, this assumption has been applied
to image quality and spatial frequency. This idea is mentioned
again in the section "Image Quality Metrics and the Use of Image,
Display, and Observer Characteristics," where the 1logarithmic
metrics are more thoroughly discussed.

CHARACTERISTICS OF TWO-DIMENSIONAL STATIC IMAGES

When a static three-dimensional world is projected onto a two-
dimensional space, depth information is lost or transformed through
the projection. Although the perception of depth in two dimensions
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CS8F versus MTF Weighting Function: Normal Plot
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is a key issue in simulator displays currently, it has received no
attention, as yet, from an image quality perspective. In image
quality, the focus currently lies with the two-dimensional display
and its luminance, contrast, and resolution characteristics. This
distinction is made here because it is clear that, at some point in
time, image quality research will begin to concern itself with the
perceptual aspects of computer-generated images and how well
displays relate the appropriate visual cues to the viewer.

Spectral characteristics, or color in the psychological
domain, contribute ¢to perceived brightness, contrast, and
resolution. At this point in time, however, the spectral
components are weighted and summed according to their photometric
or receptor (cone) weighting components and treated as a single
scalar quantity (i.e., luminance in fL or cd/m?).

Given scalar quantities (i.e., luminance) as points in a two-
dimensional space, the static image may now be analyzed using a
traditional Fourier approach. With digitized images, the discrete
two-dimensional Fourier transform is applied to the image. The
following section reports on the use of discrete Fourier transforms
to characterize the luminance-varying content of imagery.

Global Versus Local Aspects of Images

Field (1987) and Hultgren (1990) reported on findings from the
digitization and discrete Fourier analysis of natural images. Some
of their findings are reproduced in Figures 17a and 17b. The
results show that an overwhelming majority of the energy in the
image is located at low spatial frequencies. Researchers in the
image quality area have used such findings to suggest that image
quality metrics should be weighted accordingly. That is, if images
are overwhelmingly composed of low spatial frequency information,
the ability of a display device to maintain image quality (e.g.,
contrast) at low spatial frequencies should be weighted more
heavily relative to high spatial frequency capabilities.

Figures 18 through 22 portray static images used by Kleiss and
Hubbard (1991) in the study of visual features important to low-
level flight. These five images represent extremes from a multi-~
dimensional space obtained by Kleiss when pilots were asked to rate
the similarities between a number of static images.

Figure 23 shows the magnitudes in a one-dimensional (the
horizontal direction or along the raster 1lines) fast Fourier
transform (FFT) of the five test images after the images were
digitized into 512 X 512 elements. The results parallel those of
Field (1987) and Hultgren (1990) in that the images are
overwhelmingly composed of low spatial frequency information. 1In
addition, note the difficulty in discriminating between the images
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Figure 20
Low-Level Mountain Image from Kleiss (19%1) MDS Study
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Figure 22
Low-Level Pine Tree Image from Kleiss (1991) MDS Study




FFT MAGNITUDES - HORIZONTAL
AVERAGED OVER 500 ROWS

1 .
: . =
g 0‘9 . eetseanestrersernsenressressanen eeeveeseerrresereiTrets taseserrenastrartesiesanraritine Oir ﬂdd
S0.8 , - -
crops
0.7 ...... eerssierressetseenvenrtas e ttaetantnrnrern ey a ot easet et esr e e eeerens R s anranrns et ttroae e e eresuaneoattbunsasrrsierrerinire ~—
0.6 - | mountain
—p—
80.5 eseenertesncesreressanss eeaeeerterrerenesreataareshieeosnriatasetttennetasitavesneretnereestbnesensttensstnesieansasstins ocean
8 T . T ==
E ) | pines
0.3 e teereeterirenseartesssansnnrnernresrenssesnans ertnersestornsensesterrsnas
0.2 eeeeerotsrreerateeneararannasdteeesestsesenertanetanstansasantrrreraenurrerasnsonseeonritsres reervrrnvenrernaseessrtanasanseen
o 1 .............................................................................................................................................................
0 T T ]
0.00 2.00 4.00 8.00 8.00 10.00 12.00 14.00

spatial frequency (cycles/degree)

Figure 23
One-Dimensional Fast Fourier Transform of Kleiss Imagery
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in the frequency domain. In spite of the distinctiveness of these
images, the spatial frequency content of any one of the images
could be used as a predictor of the other images. Field (1989)
emphasizes this point using an example where random smudges in a
two-dimensional image are shown to have the same power spectrum as
a clear outline of a human face.

Figures 24 and 25 represent more localized Fourier analyses of
the same five images. These results are based upon 32 point FFTs
(Fig. 24) and 16 point FFTs (Fig. 25) taken at random locations in
the images. Note the change in the relative amount of energy at
higher spatial frequencies across Figures 23, 24, or 25 as the
analysis moves from a global to a more localized basis.

The FFT of the complete image involves an averaging process of
frequencies over the entire image. Most images contain large
homogeneous blobs (in luminance content) which dominate the spatial
frequency analysis. High spatial frequency information |is
contained in localized areas of the image, most likely areas on
which observers tend to fixate during visual inspection of the
image. In the next section, the implication of the distribution of
energy in natural imagery for image quality metrics is discussed in
more detail.

The findings shown in Figures 23 through 25 are relatively
robust. Static images in the everyday world are predominantly
composed of low spatial frequency information. Taken only from the
perspective of the image, then, and much like what any sampling
theorem from descriptive statistics would tell us to do, it seems
only natural to heavily emphasize these low spatial frequencies in
image quality metrics.

Other image quality metrics of recent vintage (e.q., Barten,
1987; Granger & Cupery, 1972) have implicitly or explicitly taken
this finding into account by integrating over the spatial frequency
axis as a function of the logarithm of spatial frequency. Figure
26 provides an example of how integration by dln(u), the natural
log of spatial frequency, affects integration relative to
integration over du, linear spatial frequency, for the DART and
LFOV displays in Figure 2. The area under both MTFs represents the
value of the integration. 1In Figure 26, more than 90% of the area
is below 1 cycle/degree of visual angle. In Figure 2, just the
opposite is true. 1In addition, note that if the area under the
curves is used as a metric, the LFOV is notably superior to the
DART in Figure 26, while in Figure 2, the areas under the curve are
more nearly equal, denoting equality of image quality.

The rationale to weight low spatial frequencies heavily based
solely on the overall dominance of the energy at low frequencies in
images (or a Weber’s Law JND viewpoint) neglects our knowledge of
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Figure 24
Localized 32-Point Fast Fourier Transform Example
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Figure 25

Localized 16-Point Fast Fourier Transform Example
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Figure 26
DART Versus LFOV MTF Comparison Plotted on Logarithmic Scale
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the human visual system. Humans tend to foveate on high spatial
frequency information and a disproportionate amount of the time in
ocular excursions is spent visiting localities with high spatial
frequency content. Of course, if one argues that our systems
approach to image quality should combine the effect of each
component (image, display, observer) separately, then the argument
may be made that the logarithmic integration should be compensatad
for in the final stage of filtering. Neither the CSF nor the MTF
of the eye attest to our propensity to foveate on a localized area
of high spatial frequency. 1Inclusion for this propensity in an
image quality metric would likely require a probability density
function representing the relative amount of time spent fixating on
localized areas within an image.

Without such compensation in the image quality metric, we can
estimate what the effects will be on an image quality metric.
Figures 26 and 27 are examples which drive home this point.
Although device #2 retains more contrast over most of the spatial
frequency range as shown in Figure 27, a plot of modulation by the
natural log of spatial frequency (Fig. 28) will reverse the amount
of area under the two curves. Any improvement in the high spatial
frequency components of a visual display will easily be outweighed
by much less compensation at low spatial freguencies.

One method of testing the relative contributions of high, mid,
and low spatial frequency information in images would be to
systematically filter out spatial frequency components of imagery.
A variety of methods (scaling, paired comparisons) could then be
used to empirically determine the quality of the imagery. However,
modulating contrast within bands of frequencies while holding
luminance constant is a complex task. This problem is discussed in
more detail in the section entitled "An Experimental Approach for
Examining the Effect of Display MTF on Perceived Image Quality"
within this report.

Now that the components of the system (image, display,
observer) have been discussed more thoroughly, & general
introduction to image quality metrics from the literature shall be
presented. In the next section, the MTF, the MTFA, the SQRI, and
the SQF are presented as examples of image quality metrics in order
to show how factors from the image, display, and observer are
specifically incorporated.

IMAGE QUALITY METRICS AND THE USE OF IMAGE,
DISPLAY, AND OBSERVER CHARACTERISTICS

In the previous sections, important characteristics of the
image, the display, and the observer involved in the transmission
of visual information were introduced. In this section, the
contribution from each of these components to actual image quality
metrics is examined using examples from the literature.
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Figure 27
Comparison of Two Hypothetical Display MTFs on Linear Scale
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As suggested previously, the display MTF was the first factor
used as an indicator of image quality. Strehl in 1902 (see Chapter
2 of Biberman, 1972) suggested using the area under the two-
dimensional MTF as an indicator of image quality. In the 1940s,
Schade (Biberman, 1972) is credited with popularizing the use of
the display MTF as an indicator of image quality for televisions.
As an image quality measure, he used the upper frequency cutoff of
a square wave which had an equal amount of area under the curve as
the display MTF.

Both of the techniques discussed are compact and efficient
methods of obtaining a metric or measure of image quality. They
disregard many parameters which are critical to image quality but
were probably sufficient for comparing displays from their time
period. More recently, though, technological changes have allowed
for the existence of a large variety of visual displays based upon
a variety of technologies. Owing to this variety, the resulting
imagery differs along many dimensions and the different
technologies will incur trade-offs across these dimensions.

In some cases, improvements in technology could permit the
generation of imagery which surpassed the capabilities of the
observer. The inclusion of the CSF function along with the display
MTF served as an attempt to subtract from the display MTF
information which could not be used by the observer. The MTFA
(Snyder, 1985) serves as an example of such a metric.

As shown previously, the CSF is the inverse of the minimum
amount of contrast required to discriminate a sinusoidal waveform
from a homogeneous field of equal luminance. The inverse of the
CSF may be designated as the Demand Modulation Curve (DMC) or that
amount of contrast which the visual system demands for
discrimination. Snyder (1985, Chapter 4) denotes this function as
the Contrast Transfer Function (CTF). Scott (1966) developed a
similar function for the resolvability of a three-bar pattern which
he called the Demand Modulation Function (DMF). The use of a
three-bar pattern is a derivation of the Johnson Criteria (Johnson,
1958 - see Fig. 29) where targeting performance is equated with the
resolution of bar patterns. It is interesting to note that the
spatial frequency approach in image quality (i.e., required
modulation as a function of spatial frequency) is not that far
removed from empirical work performed in the late 1950s.

Figure 30 shows a plot of a one-dimensional display MTF along
with three demand modulation curves. The three DMCs were generated
for three different levels of average display luminance using van
Meeteren’s approximation as presented in Equation 18. By computing
the area under the display MTF in Figure 30, a simple metric is
formed. Conceptually, however, it can be argued that any display
modulation capabilities below the threshold of the visual systen,
as determined by the DMC should not contribute to a metric. 1In
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Figure 30, this would translate into subtracting the area below the
DMC from the area below the display MTF for all spatial
frequencies. Mathematically, this idea is as follows:

U=umax
MTFA = f [MTF(u) -DMC(u) ) du (25)

us=0

where u is spatial frequency in, for example, cycles per degree of
visual angle and umax represents the highest frequency displayed by
the display device.

The important considerations of the MTFA are as follows.
First, note that the integration across spatial frequency in
Equation 25 is linear or that the integration is with respect to u,
the spatial frequency. That is, all spatial frequencies are
weighted equally in their contribution to the metric. This
weighting is in contrast to the more-popular logarithmic weighting
scheme discussed previously and shown in the metric examples to
follow. The second distinctive attiribute of the MTFA is tha+ the
MDC, or the inverse of the CSF, plays the part of a subti.ctive
threshold in the integrand, not a multiplicative weight. This use
is distinctively different from that of most approaches which
employ the human filter as a multiplicative weight.

Display 1luminance may be incorporated indirectly as a
parameter into the MTFA from the MDC. As display 1luminance
increases, the demand modulation curve either remains the same or
decreases for all spatial frequencies, depending upon the model
employed for representing Contrast Sensitivity. For example, the
van Meeteren Estimate (Equation 19) incorporates display luminance
although other estimates may not. The end result is that the MTFA
can be made to increase with improvements in display luminance.
This ordinal implication, though, says nothing about the
comparative effects of display luminance versus display MTF on
image quality.

From the MTFA, we proceed to discussion of metrics which
employ the human filtering as a multiplicative weight. Granger and
Cupery (1972) presented the Subjective Quality Factor (SQF) as an
objective figure of merit for testing MTF shapes. The SQF is given
as:

u=40
SOF = K fMTF(u) d(ln(u)) . (26)

u=10

u in Equation 26 above denotes spatial frequency in cycles per
millimeter at the retina. The integration in Equation 26 is with
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respect to the natural 1log of u. The premultiplier K is a
normalizing constant such that:

K= 1

u=40

1 d(1ln(u))

u=10

(27)

which causes the SQF to have lower and upper bounds of zero and 1,
respectively.

Granger and Cupery (1972) used a logarithmic integration over
the spatial frequency axis under the assumption that image quality,
lixe other psychophysical sensations, should follow a Weber’s
function. That is, psychophysical sensation (e.g., perception of
brightness, loudness) as measured in JNDs from relative observer
thresholds, is a logarithmic function of the magnitude of the
physical phenomenon.

Another interesting point of the SQF is that the integration
has lower and upper bounds of 10 and 40 cycles per millimeter on
the retina. These limits were used for integration based upon the
finding that the eye is most sensitive within these limits (Schade,
1964). If we assume that the focal length from the lens of the eye
to the retina is approximately 22.42 millimeters (Pugh, 1988), 10
and 40 cycles/millimeter translates into 3.91 and 15.65 cycles/
degree of visual angle, respectively. In an indirect fashion, this
assumption provided a bandpass fil. :r for the human visual system
which was identically 1 between 3.91 and 15.65 cycles/degree, and
zero outside this range.

Barten (1987, 1989, 1990) introduced the SQRI measure. This
measure uses the CSF as a weighting function for the display MTF.
The mathematical form of the SQRI is as follows:

usumax .

1
= 1 [ 2 28
SORI = = f IMTF(u) CSF(u)]? dln(u). (28)

where u is spatial frequency in, for example, cycles per degree of
visual angle, CSF denotes the Contrast Sensitivity Function, and
MTF denotes the Modulation Transfer Function or, equivalently, the
modulation depth curve. The premultiplier of 1/1n{(2) was chosen so
that if the MTF was equivalent to the inverse of the CSF over a 1-
log unit range and zero elsewhere, Equation 28 would integrate to
a value of 1.

The unit of measurement for Equation 28 is JNDs. A perceptual
JND is operationally defined as a 75 correct response rate in a
two-alternative, forced choice experiment. Hypothetically, then,
if two images, A and B, were presented and image A had an SQRl
value which was one JND higher than the image B, the observer would

61




prefer image A on 75% of the trials and image B on 25% of the
trials.

The SQRI in Equation 28 and the SQF in Equation 26 use a
logarithmic integration over the spatial frequency axis. Figures
31 and 32 are plots of the integrand in Equation 28 (the SQRI) with
respect to the 1logarithm of spatial frequency and spatial
frequency, respectively. In Figures 31 and 32, Equation 19 was
used to approximate the CSF, and the rightmost equality of Equation
16, a Gaussian profile, was used to approximate the display MTF.
The area under the curve in Figure 31 represents the value of the
SQRI in Equation 28 for the sample CSF and MTF employed. The area
under the curve in Figure 32 represents the value of the SQRI if a
linear integration was performed in Equation 28.

By. comparing the curves in Figures 31 and 32, the information
content of the metric becomes evident. In Figure 31, more than 90%
cf the integral is derived from spatial frequencies less than 10
cycles/degree. The conclusion is that a logarithmic integration
tends to weight low spatial freovency information (i.e., modulation
capability) very heavily in a display device relative to high
spatial frequency information. Referring back to the discussion on
global versus local aspects of images, this weighting is consistent
with the spatial frequency content of natural imagery. As
mentioned, though, observers tend to spend a majority of time
fixating or foveating on high spatial frequency information in
images. For image quality purposes, this fact may tend to outweigh
the predominance of 1low spatial frequency information within
images.

In order to test such hypotheses (i.e., the relative
importance of information within specific bands of spatial
frequency), it is necessary to present stimuli which have been
differentially filtered in the spatial frequency domain. This is
a complex task, though, because of the difficulty in filtering
specific spatial frequencies and, at the same time, maintaining
constant energy or luminance in an image. This problem is
discussed “urther in the next section.

As an example of empirical tests of the metrics described
here, many of the referenced papers used the following procedurees.
First, observers rank order or use a Likert Scale rating to show
the'r preference for images from the experimental displays. Next,
the appropriate image quality metric 1is computed for each
experimental display. The rank orders or ratings cre then
correlated with the computed metric for the display of interest.
Many authors plot the empirical rating on the x-axis and the metric
prediction on the y-axis and test for a linear fit (i.e., a
correlation). After collecting the empirical ratings, it is then
a straightforward matter to compare correlations obtained by
different metrics in order to determ e which metrics perform best.
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This correlational method is simple and straightforward. 1Its
drawback is that it is very insensitive to changes in many display
parameters and lacks power in testing many of the multidimensional
aspects of interest in image quality. For example, a linear fit to
the normal ogive (the cumulative normal distribution curve)
predicts 97.7% of the variance (r,, > .99) for the ogive in a 95%
confidence interval around the mean. Processes which are normally
distributed can be almost perfectly approximated by triangular
distributions or linear fits. The analogy in image quality is that
the metrics are correlated with empirical measures of image
guality. Whether they capture the essence of factors contributing
to the process, though, is unclear.

In the remaining two sections of this report, an experimental
methodology is described for manipulating individual display
parameters in imagery and measuring changes in observer responses.

AN EXPERIMENTAL APPROACH FOR EXAMINING THE EFFECT
OF DISPLAY MTF ON PERCEIVED IMAGE QUALITY

As showit throughout this report, the display MTF is a
cornerstone in the construction of image quality metrics. For
display devices, the MTF denotes the amount of Michelson Contrast
available from a sinusoidal waveform as a function of spatial
frequency. As pointed out, ambiguities exist in the empirical
measurement and development of the display MTF. These ambiguities
carry over into image quality metrics.

As shown earlier on measuring luminance modulation from
display devices, the major ambiguity lies in the fact that a true
MTF is identically 1 at DC or zero spatial frequency. In classical
linear systems, this equivalence reflects the fact that signal
energy is neither lost nor gained from input to output. The
Michelson Contrast reaches a value of 1 only when the minimum
luminance from the screen is identically zero. For most displays,
two facteors will contribute to the minimum luminance, ambient light
and the dark or minimum luminance level of the display. Factors
affecting ambient illumination in the immediate environment include
not only external lighting within the environment but also the
display (and its physical size) as light is reflected within the
environment. When modulation depth curves are generated by the
direct measurement method (see Beaton, 1989, or Kelly, 1992), the
Michelson Contrast at zero frequency (i.e., the DC value on the MTF
curve) is computed using the maximum and miniium or dark luminance
values neasured ftrom the display. For practical displays, this
modulation will never reach a value of 1.

It should be clear, then, that when applylny empirical display
MTfs or modulation depth curves in metrics, curves should be
normalized to a value of 1 at zero frequency with the knowledge

65




that this is not a true estimate of display contrast in the actual
environment. If one wishes to isolate the display from the
surrounding environment and its ambient illuminaticn, the ambient
illumination may be subtracted from the minimum luminance measured
from the display. This may yield modulation near unity at zero
spatial frequency.

In this section, hypothetical display MTFs are generated which
have a modulation depth of 1 at zero frequency. Our interest is in
being able to simulate the effect a range of display MTFs will have
on images and empirically measure observer responses. The visual
and psychological literature has an abundance of data concerning
observer sensitivity to sinusoids and square wave forms of varying
contrast. There are little data available concerning modulation
filtering of real-world images. The next subsection discusses in
further detail the digital filtering of the experimental images.

In order to study the effect or how variations in the display
MTF affect perceived image gjuality, a number of assumptions and
simplifications were mzide. Gaussian MTFs were chosen to represent
realistic display MT#s. As shown earlier, Gaussian MTFs can be
efficiently represented and manipulated in both the spatial and the
frequency domains. Five sample MTFs were chosen as filters.
Frequency and spatial representations of these filters are shown in
Figures 33 and 34 respectively. Figure 35 is a normalized version
of Figure 33 where all values in the curve have been divided by the
modulation at zero or DC frequency. All three figures (i.e., 33,
34, and 35) are one-dimensional representations for simplified
viewing. The actual filters are two-dimensional with symmetry
holding across dimensions (i.e., independence holds across the two
dimensions). 1In Figure 33, each of the curves are of the form:

MTF(f) = ae»f’ (1 dimension)

bigdesd) ) (29)
OR MTF(f,,£,) = ae™”'*""%" (2 dimensions)

where f, and f, denote spatial frequency in the vertical énd
horizontal dimensions measures (f denotes spatial frequency in a
single direction) in cycles/degree of visual angle. Each curve may
now be identified uniquely through the tuple (a,b) as shown in the
legend of Figure 33. Applying the inverse Fourier transform, these
curves can now be represented in the spatial domain (Figure 34)
using the equation: xix?

h(x) = -aﬁe_b_ (1 dimension) | .

. : . (30)

2 (x2exd)

OR h(x,,x;) = a-!‘/C;e- b (2 dimensions) .
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One-Dimensional MTFs for Experimental Filters
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where x, and x, reJresent distance in the vertical and horizontal
dimensions (x is distance in a single dimension) and h(x,,x,) is the
2-dimensional convolution filter in the spatial domain (h(x)
denotes a unidimensional convolution filter).

The curves in Figure 33 represent hypothetical modulation
depth curves which are conceptually interesting. Two of the curves
have y~intercept values of 1 (i.e., a = 1) and two curves intercept
the y-axis at values lower than 1 (a=.85 and a=.90). Three of the
curves cross over one another at approximately 8 cycles/degree of
visual angle. Thus, a comparison of these curves would yield an
image quality preference for low or high spatial frequency contrast
in an image.

As mentioned in the section on measuring luminance from
display devices, the filters with y-intercepts of less than 1 in
Figure 33 will lower the average luminance of an image. In order
to compare MTFs while holding other parameters (e.g., luminance)
constant, it becomes necessary to normalize the curves in Figure 33
to a value of 1 at zero frequency. In the spatial domain, this is
equivalent to requiring the filter coefficient to sum to a value of
1 (i.e., the area under the curve must integrate to unity). Figure
35 shows the MTF curves in Figure 33 normalized to unity at zero
frequency. The result in Figure 35 shows that only three curves
from Figure 33 remain distinct and these curves are well ordered in
Figure 35. The three distinct MTF curves in Figure 35 may still be
used to filter the images in Figures 18 through 22 and the
resulting images may be compared for their image quality.

In order to use the filters from Figure 35, the five images
shown in Figures 18 through 22 were digitized into 512 by 512
elements. The display device used for the images was a 1,000-line
by 1,024-pixel-wide color monitor which was apprcximately 12 inches
in height by 15 inches wide. At a viewing distance of 36 inches,
the pixel-to-pixel center distance was approximately dx = .38’ of
visual angle (=.023°). With this information and the r.,atmost
equality in Equation 16, a digitized 11 X 11 convolution filter
(h(x%,,x%,)) was calculated in a vadially symmetric fashion with the
center element being in the 6th row and 6th column. Coefficients
in the convolution filter were solved for by computing their
euclidean distance from the center urf the filter. For example, the
center or highest point in the filter, which shall be denoted as
hy, is simply

8aﬂ-o=an 31
h(0,0) 5e —%;. (31)

The filter coefficient 4 pixels vertically from the center and 3
pixels horizontally from the center is h,; and is given by
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_x3(.092%¢.084?
h(4*.023,3+.023) = Elbﬁe B . (32)

For example, if a = 1 and b = .015, h;, = 118.16 and h;, =
(118.16) (3.67 X 10%) = .0043 before normalization. In the center
of the filter, the exponential part of the equation always
evaluates to 1. As we depart from the center of the filter, the
exponential part of Equation 30 denotes the contribution of that
point in the filter relative tec the center of the filter. For
example, if b = .015 and we move one pixel horizontally or
vertically from the center of the filter, the height of the filter
is approximately 70% of the height at the center of the filter.
Moving two pixels horizontally or vertically from the center of the
filter, the height evaluates to approximately 25% of the center of
the filter.

The five 11 X 11 filters representing each of the MIFs was
numerically convolved with each of the images. In order to assure
no changes in luminance, it was necessary to normalize the matrix
of filters such that the sum of the coefficients in the 11 X 11
matrix was 1. Note, as mentioned, that in using this technique,
the ditferential in the DC contrast of the images is reduced to
zero, i.e., all DC contrasts are normalized to 1. By restricting
the filter weights to sum to 1 in the spatial domain, MTF(0,0) or
the hei¢hts of the MTFs at DC or zero frequency will automatically
evaluate to 1 in the frequency domain. The result is that an MTF
crossover effect cannot be simulated unless the images are of
different average luminance values.

Displaying the filtered images through a second display device
creates the double-pass problem. That is, the images have been
filtered to create the effect of interest but the display of these
filtered images through another device is a second filtering
process. From a linear systems approcach, the MTF of the combined
processes is the product of the individual MTFs. Therefore. if the
original filter MTF is multiplied by the MTF of the display device
used, the result is the overall filtering or MTF.

A rough estimate of the display MTF was obtained using the
direct measurement method. In the horizontal direction, the
limiting mask frequency of the display was 1,024 pixels over
approximately 15 inches. Assuming the dark band between e~~h pixel
match fills out an on-off cycle, there is a maximum of 1,024 cycles
over 15 inches. At a viewing distance of 36 inches, the
approximation from Equation 12 states that the horizontal dimension
of the display subtends 24 degrees of visual angle. The 1,024
cycles across 24 degrees of visual angle yield approximately 43
cycles/degree of visual angle as a theoretical maximum for
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resolution. If the width of the electron beam was constrained to
fall inside the holes of the mask, the modulation depth at 43
cycles/degree could be near unity at this 1limiting spatial
frequency. Of course, this type of design (width of electron beam
< mask pitch) would most likely make the raster structure of the
display device quite visible and distracting (see Murch & Virgin,
1985) .

Square waves of varying frequency were displayed on the
experimental monitor and modulation at these frequencies was
measured using a photometer. Equation 15 was used to estimate the
response to a sinusoidal input as a function of the response to a
square wave input. Even at square wave frequencies of 5 cycles/
degree, however, the higher order harmonics of Equation 14 are
nearly zero. Figure 36 shows the estimated display MTF as well as
the double-pass MTFs obtained by multiplying the filters in Figure
35 by the top curve in Figure 36. As can be seen from the
resulting MTFs in Figure 36, the double-pass filtering process is
limited by the display MTF in Figure 36 relative to the MTFs in
Figure 35.

Filtered images were presented side-by-side using a paired
comparison approach. At a viewing distance of approximately 30
inches, each image subtended approximately 13 degrees of visual
angle in both the horizontal and vertical directions. Note that
the viewing distance is already included in the calculation of the
filters in Figure 35 as well as the calculation of the display MTF
in Figure 36 in order that the MTFs be presented as a function of
viewing spatial frequency.

Ambient illumination in the display environment was
approximately 1 footcandle and the reflection of this ambient
illumination from the display is included in the calculation of the
display modulation or MTF in Figure 36.

Casual observation of the paired stimuli revealed that the
differences in the images were not detectable at the defined
viewing distance (i.e., 36 inches). At much closer viewing
distances (denoting a shift in the spatial frequency axis in both
Fig. 34 and 35), differences could be detected. In addition,
sequential presentation of images directly on top of one another
made stimuli discriminable, denoting the importance of the
experimental methodology used to present imagery.

In addition, it was evident that filtered images of the
Airport scene (see Fig. 18) were more discriminable than filtered
versions of the other four images (Fig. 19 through 22). This
finding indicates the ineffectiveness of global Fourier analysis
(Fig. 23) as a measure of the content of the imagery with respect
to viewing.
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The three double-passed MTF curves in Figure 36 differ only by
akout 3% to 10% modulation between approximately 4 and 18 cycles
per degree of visual angle. This range of modulation differences
within the mid-frequency range does not serve as a good test of the
metrics discussed in this report. The change in the metrics across
filters in Figure 36 will typically be less than a single JND. The
MTF of the display used in the presentation of the image
unexpectedly compressed the filter differences.

DIRECTIONS FOR FUTURE IMAGE QUALITY RESEARCH:
IMAGE QUALITY IN A KULTIDIMENSIONAL SBPACE

For displays used in visual simulation, image gquality
preferences are guided by multiple criteria. These criteria
reflect the physical variety in available displays which range from
helmet-mounted displays to large dome displays. In experimental
comparison of these displays, failure to control major factors
(e.g., luminance) or eliminate differences while manipulating other
factors (display MTF) results in confounded comparisons. The need
exists to explore image quality from a multidimensional
perspective. However, the capability to manipulate display
parameters or factors independently of one another simply does not
exist in many experimental situations.

This report has focused on the disvlay MTF as the major driver
of image quality. As referenced throughout the report, the MTF has
been used as the traditional measure of image quality. In many
instances, however, factors such as brightness, field of view, and
color appearance may dominate the display MTFs in their
contribution to subjective image quality.

As mentioned, it is technically difiicult to vary daisplay
factors independently of one another. For actual display devices,
improvements in one factor typically result in impoverished
measureg of other factors. For example, larger display areas
typically result in lowered luminance, decreased resolution, and
impoverished color rendering.

Using the MTF filtering techniques described in this report,
a class of display MTFs (i.e., those with luminance modulation near
unity at zero spatial frequency) may be simulated for viewing
purposes. The filtered image produced by the process represents
variation of the MTF factor or dimension. An approach where the
MTFs may be systematically varied allows testing of many important
hypotheses. For example, as presented in this report, the relative
importance of low versus high spatial frequency information (i.e.,
the weighting of spatial frequency based information) to image
quality metrics, is critical to their success.

After systematic manipulation of hypothetical display MTFs,
other modifications to the image can then be made. By including
variation of the average luminance of the image along with the MTF
variation, a factorial comparison may be conducted. Figure 37
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represents the stimulus set for a 5 X 4 factorial experiment where
display MTF (5 levels) and luminance (4 levels) are varied.

Using a paired comparisons procedure and Likert scale
preference ratings (or simply a binary preference) as the response
reasure, a variety of multidimensional measures may be developed.
Figure 38, a two-dimensional isopreference mapping, is one of these
measur2s. Figure 38 denotes a hypothetical mapping where the MTF-
luminance combinations in the same region would be equally
preferred to each other. If the MTF dimension is permitted to vary
in such a fashion as to cover both high- and low-resoclution
displays, and the luminance dimension is permitted to vary soc as to
cover bright as well as very dim dispiays, the mapping in Figure 3¢
would yield a practical ordinal metric for visual displays covered
by the two-dimensional MTF-luminance range.

Luminance und MTF may be varied independently of one another
for a constrained subset of pairings (i.e., MTFs which are unity at
zero frequency and a variety of luminance and MTF curves which are
well within the capakility of the display devi~-). Using a more
complicated scheme, MTFs may also be generated w. .". need not reach
a value of unit at zero spatial frequency. Beyond such
manipulations, the next logical parameter of interest is the field
of view., Variation of this parameter independently of luminance or
MTF is not easily accomplished due to nonhomogeneities introduced
for larger field-of-view displays. One possibility 1is to
manipulate the viewing distance and compensate for the shift along
the spatial frequency axis (of the image and display content)
through software. This procedure would be quite complex, though.
In addition, it is not clear that a straightforward experimental
comparison can be made across dimensions such as field of view and
luminance or MTF. For example, asking an observer whether they
prefer a large field-of-view image which is dark as opposed to a
small field-of-view image which is bright may simply not be a
useful comparison or may not be a meaningful comparison to the
observer. With such comparisons, it may also be true that the
individual, the task, or the image is a moderating factor in the
decision. For example, in sporti..g bars where viewers can choose
large~-screen, relatively low-luminance projection devices or small-
screen, high-luminance CRTs, the preference may hinge on the type
of event being viewed, the event being associated with a task such
as tracking the movement of a tennis ball or a football.

Finally, increments in display parameters such as field of
view, luminance, and MTF will always be expected or predicted to
improve ,r at least maintain, image quality. However, imnage-
display artifacts (e.g., moire patterns) and display-observer
artifacts (=2.g9., simulator sickness) for specific configurations
can contradict these general trends. For example, increasing the
field of view of the display at small viewing distances may lower
perceived imaga quality by causing nausea or other simulator
sickness~related symptoms. In the near future, these artifacts
will most likely be discovered on a case-by-case basis and included
in image quality criteria only as exceptions to general models or
predictions.
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